Design of Substation

Elements of a substation
A:Primary power lines’ side

B:Secondary power lines’ side
1.Primary power lines

2.Ground wire

3.Overhead lines

4.Transformer for measurement of electric voltage

5.Disconnect switch

6.Circuit breaker

7.Current transformer

8.Lightning arrester

9.Main transformer

10.Control building

11.Security fence

12.Secondary power lines

Substations generally have switching, protection and control equipment, and transformers. In a large substation, circuit breakers are used to interrupt any short circuits or overload currents that may occur on the network. Smaller distribution stations may use recloser circuit breakers or fuses for protection of distribution circuits. Substations themselves do not usually have generators, although a power plant may have a substation nearby. Other devices such as capacitors and voltage may also be located at a substation.

Substations may be on the surface in fenced enclosures, underground, or located in special-purpose buildings. High-rise buildings may have several indoor substations. Indoor substations are usually found in urban areas to reduce the noise from the transformers, for reasons of appearance, or to protect switchgear from extreme climate or pollution conditions.

Where a substation has a metallic fence, it must be properly grounded to protect people from high voltages that may occur during a fault in the network. Earth faults at a substation can cause a ground potential rise. Currents flowing in the Earth’s surface during a fault can cause metal objects to have a significantly different voltage than the ground under a person’s feet; this touch potential presents a hazard of electrocution. The main issues facing a power engineer are reliability and cost. A good design attempts to strike a balance between these two, to achieve reliability without excessive cost. The design should also allow expansion of the station, when required.


Location Selection

Selection of the location of a substation must consider many factors. Sufficient land area is required for installation of equipment with necessary clearances for electrical safety, and for access to maintain large apparatus such as transformers.

Where land is costly, such as in urban areas, gas insulated switchgear may save money overall. Substations located in coastal areas affected by flooding and tropical storms may often require an elevated structure to keep equipment sensitive to surges hardened against these elements. The site must have room for expansion due to load growth or planned transmission additions. Environmental effects of the substation must be considered, such as drainage, noise and road traffic effects.

A grounding (earthing) system must be designed. The total ground potential rise, and the gradients in potential during a fault (called “touch” and “step” potentials),[7] must be calculated to protect passers-by during a short-circuit in the transmission system.

The substation site must be reasonably central to the distribution area to be served. The site must be secure from intrusion by passers-by, both to protect people from injury by electric shock or arcs, and to protect the electrical system from misoperation due to vandalism.


Design Diagrams

The first step in planning a substation layout is the preparation of a one-line diagram, which shows in simplified form the switching and protection arrangement required, as well as the incoming supply lines and outgoing feeders or transmission lines. It is a usual practice by many electrical utilities to prepare one-line diagrams with principal elements (lines, switches, circuit breakers, transformers) arranged on the page similarly to the way the apparatus would be laid out in the actual station.[2]

In a common design, incoming lines have a disconnect switch and a circuit breaker. In some cases, the lines will not have both, with either a switch or a circuit breaker being all that is considered necessary. A disconnect switch is used to provide isolation, since it cannot interrupt load current. A circuit breaker is used as a protection device to interrupt fault currents automatically, and may be used to switch loads on and off, or to cut off a line when power is flowing in the ‘wrong’ direction. When a large fault current flows through the circuit breaker, this is detected through the use of current transformers. The magnitude of the current transformer outputs may be used to trip the circuit breaker resulting in a disconnection of the load supplied by the circuit break from the feeding point. This seeks to isolate the fault point from the rest of the system, and allow the rest of the system to continue operating with minimal impact. Both switches and circuit breakers may be operated locally (within the substation) or remotely from a supervisory control center.

With Overhead Transmission Lines (OHTLs), the propagation of lightning and switching surges can cause insulation failures into substation equipment. Line entrance surge arrestors are used to protect substation equipment accordingly. Insulation Coordination studies are carried out extensively to ensure equipment failure (and associated outages) is minimal.

Once past the switching components, the lines of a given voltage connect to one or more buses. These are sets of busbars, usually in multiples of three, since three-phase electrical power distribution is largely universal around the world.Onderdel_spoorwegnet

The arrangement of switches, circuit breakers and buses used affects the cost and reliability of the substation. For important substations a ring bus, double bus, or so-called “breaker and a half” setup can be used, so that the failure of any one circuit breaker does not interrupt power to other circuits, and so that parts of the substation may be de-energized for maintenance and repairs. Substations feeding only a single industrial load may have minimal switching provisions, especially for small installations.[

Once having established buses for the various voltage levels, transformers may be connected between the voltage levels. These will again have a circuit breaker, much like transmission lines, in case a transformer has a fault (commonly called a “short circuit”).

Along with this, a substation always has control circuitry needed to command the various circuit breakers to open in case of the failure of some component.


Early electrical substations required manual switching or adjustment of equipment, and manual collection of data for load, energy consumption, and abnormal events. As the complexity of distribution networks grew, it became economically necessary to automate supervision and control of substations from a centrally attended point, to allow overall coordination in case of emergencies and to reduce operating costs. Early efforts to remote control substations used dedicated communication wires, often run alongside power circuits. Power-line carrier, microwave radio, fiber optic cables as well as dedicated wired remote control circuits have all been applied to Supervisory Control and Data Acquisition (SCADA) for substations. The development of the microprocessor made for an exponential increase in the number of points that could be economically controlled and monitored. Today, standardized communication protocols such as DNP3, IEC 61850 and Modbus, to list a few, are used to allow multiple intelligent electronic devices to communicate with each other and supervisory control centers. Distributed automatic control at substations is one element of the so-called smart grid.


Switches, circuit breakers, transformers and other apparatus may be interconnected by air-insulated bare conductors strung on support structures. The air space required increases with system voltage and with the lightning surge voltage rating. For medium-voltage distribution substations, metal-enclosed switch gear may be used and no live conductors exposed at all. For higher voltages, gas-insulated switch gear reduces the space required around live bus. Instead of bare conductors, bus and apparatus are built into pressurized tubular containers filled with sulfur hexafluoride (SF6) gas. This gas has a higher insulating value than air, allowing the dimensions of the apparatus to be reduced. In addition to air or SF6 gas, apparatus will use other insulation materials such as transformer oil, paper, porcelain, and polymer insulators.


Outdoor, above-ground substation structures include wood pole, lattice metal tower, and tubular metal structures, although other variants are available. Where space is plentiful and appearance of the station is not a factor, steel lattice towers provide low-cost supports for transmission lines and apparatus. Low-profile substations may be specified in suburban areas where appearance is more critical. Indoor substations may be gas-insulated switchgear (at high voltages), or metal-enclosed or metal-clad switchgear at lower voltages. Urban and suburban indoor substations may be finished on the outside so as to blend in with other buildings in the area.

compact substation is generally an unmanned outdoor substation being put in a small enclosed metal container in which each of the electrical equipment is located very near to each other to create a relatively smaller footprint size of the substation.